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Abstract

The paper presents a three-dimensional beam element developed for predicting the damping of composite blades with

hollow laminated cross-sections. The unified theoretical framework for synthesizing the equivalent damping properties of a

tubular composite blade section is outlined. Building upon the damping mechanics, a damped three-dimensional shear

beam finite element is developed, which explicitly provides damping, stiffness and mass matrices. A methodology for

analyzing the damped free-vibration response of tubular beams is formulated, and modal frequencies and modal damping

values are predicted. Application examples illustrate the ability of the beam element to predict the modal damping and

modal frequencies of hollow blades of various uniform circular, elliptical and box sections. The results further quantify the

ability of the element to capture the strong effect of skin laminations, as well as the contribution of shear to the modal

damping of the beam.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The continuous evolution of wind-turbine and helicopter rotors towards longer and more flexible composite
blade configurations and the associated implications on blade aero-elastic performance and fatigue life, are
placing new requirements for understanding, analyzing and possibly improving the passive damping which
composite materials introduce into a tubular composite blade structure. These requirements call, among other
issues, for the development of admissible theoretical frameworks and analytical capabilities which in the long
term will enable simultaneous predictions of damping, stiffness and mass in composite blades, while
understanding the effect of various material and geometry parameters on structural damping. In order to
cover this void in current analytical and modeling technology, novel integrated composite damping mechanics
and a new finite element for tubular composite beams have been developed, for the prediction of the damped
free-vibration response using minimal input of material and geometrical parameters. This paper outlines the
theoretical background of a new shear-deformable damped beam finite element and illustrates its capability to
predict the structural modal damping of composite blades.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Most of the reported work in the area of composite damping modeling has been focused on damping
mechanics of composite materials and laminates [1–4]. Various analytical solutions and finite elements for
predicting the damping of laminated plate and shell structures have been also reported [5–10]. On the other
hand, various composite beam formulations and finite elements for predicting the static and undamped
dynamic response of composite blades have been also developed [11–19]. However, no work seems to have
been reported towards the development of beam mechanics and finite elements capable of predicting the
damping of tubular composite blades.

In the following sections, damping mechanics developed for predicting the equivalent damping of tubular
laminated composite beam sections of arbitrary geometry are briefly described. The formulation includes
multi-scale damping models for each composite ply, for the skin laminate, and eventually for the complete
tubular beam section. The beam kinematics entail constant shear assumptions, thus the beam damping
mechanics include effects of transverse shear on both beam damping and stiffness. Based on this damped beam
model, a three-dimensional shear beam finite element is subsequently formulated for predicting the structural
damping of hollow composite beams and blades. In the present formulation, emphasis is mainly placed on
skin laminations exhibiting negligible extension–shear coupling. Through the integrated approach, the finite
element has the capability to yield damping matrices, in addition to stiffness and mass matrices, which are
explicitly related to a minimal number of input parameters, such as, the damping and elastic coefficients of the
composite material, the skin laminate configurations, the cross-section shape and the overall blade geometry.
The capability of the new element to effectively predict modal damping and frequencies of typical composite
beam configurations is quantified next, through a series of evaluation and validation cases. The numerical
results also illustrate the combined effect of composite materials, skin lamination, cross-sectional
configuration and beam geometry on the overall structural damping and the natural frequencies of the beam.

2. Tubular laminated beam

This section provides a brief description of the damped beam mechanics of beams having a hollow tubular
laminated cross-section, as the one shown in Fig. 1. It is assumed that the section is closed, has an arbitrary
geometry and that the skin may consist of various segments of arbitrary lamination which are defined about its
mid-line. The beams are assumed to be neither curved nor pre-twisted. The equivalent cross-section properties
are expressed in terms of a Cartesian coordinate system Oxyz; whereas, the skin lamination, ply properties and
Fig. 1. Typical hollow beam cross-section geometry, coordinate systems and generalized displacements.
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equivalent properties of the skin laminate are defined in terms of the local curvilinear system Oxsz shown in
Fig. 1. The assumed positive directions of generalized displacements and equivalent forces and moments are
also shown in Fig. 1.

2.1. Section kinematics

The assumed section deformation admits extension along x-axis, bending in y and z directions, torsion
about the x-axis and shear deformation in y and z directions. In this context, it is reasonable to assume that at
each point of the skin laminate the equivalent transverse normal and shear laminate stresses Nss, Nsz, and
transverse moment Ms defined along the local coordinate system O0xsz, should be negligible. Moreover, the
displacements at each point of the section are expressed in the Cartesian system Oxyz by the following
equations:

uðx; y; zÞ ¼ u0ðxÞ þ byðxÞzþ bzðxÞyþ y;xðxÞCðy; zÞ,

vðx; y; zÞ ¼ v0ðxÞ � yðxÞz,

wðx; y; zÞ ¼ w0ðxÞ þ yðxÞy, (1)

where u0; v0;w0 are the displacements of the section at the origin of the coordinate system Oxyz; by, bz are
bending rotation angles about axes y and z, respectively; y is the twisting angle and Cðy; zÞ is the secondary
warping of the section; the comma in the subscripts indicates differentiation. In the curvilinear system O0xsz,
kinematic assumptions (1) are expressed by the following form:

u0ðx; s; zÞ ¼ u0ðxÞ þ byðxÞðz0 þ y0
;szÞ þ bzðxÞðy0 � z0;szÞ þ y;xðxÞð�r0zzþC0ðsÞÞ,

v0ðx; s; zÞ ¼ v0ðxÞ � yðxÞðr0z þ zÞ,

w0ðx; s; zÞ ¼ w0ðxÞ þ yðxÞr0s , (2)

where ðy0; z0Þ and ðr0s ; r
0
zÞ are the projections of the vector r

0 describing the distance between a point O0 on the
skin mid-surface from point O on the section axis x, on the respective axes of coordinate systems Oxyz and
O0xsz; Cðs; zÞ ¼ �r0zzþC0ðsÞ is the secondary warping function of the section. The prime symbol indicates
vector and tensor components expressed in the curvilinear system, and is implied in the following paragraphs.
The assumed section deformation yields the normal and shear strains acting on the cross-section

�xðx; s; zÞ ¼ �0xðxÞ þ kxyðxÞðz0 þ y0
;szÞ þ kxzðxÞðy0 � z0;szÞ þ y;xxðxÞð�r0zzþC0ðsÞÞ,

�xsðx; s; zÞ ¼ �0xzðxÞz
0
;s þ �

0
xyðxÞy

0
;s þ �

0t
xsðx; sÞ � 2y;xz,

�xzðx; s; zÞ ¼ �0xzðxÞy
0
;s � �

0
xyðxÞz

0
;s. (3)

In the above equations, the generalized strains, which equivalently describe the deformation of the section,
include the axial strain �0x, the transverse shear strains �

0
xy; �

0
xz, the bending curvatures kxy, kxz and the twisting

curvatures ky, kyy, where

�0x ¼ u0
x; �0xy ¼ v0;x þ bz; �0xz ¼ w0

;x þ by,

kxy ¼ by;x; kxz ¼ bz;x; ky ¼ y;x; kyy ¼ y;xx. (4)

The second twisting curvature kyy expresses second-order variation and is assumed to be negligible with
respect to the other generalized strains. The torsional strain on the mid-surface �0xst can be evaluated by
considering and solving the torsion stress equilibrium equation on the sz plane using a properly chosen
torsional strain function F. In this context, the mid-surface torsional strain and the secondary warping
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function are found to be

�0t
xsðsÞ ¼ DFðsÞ=hðsÞ,

C0ðsÞ ¼ DA0 �
DF
y;x

Dl, (5)

where DF is the difference of the strain function between the inner and outer surface, A0 and l are geometric
section parameters defined by

DFðsÞ
y;x
¼ �A0=l,

DA0 ¼

Z s

0

r0z ds; Dl ¼
Z s

0

1

h
ds; A0 ¼

I
r0z ds; l ¼

I
1

h
ds. (6)

2.2. Equations of motion

The equations of motion of the beam can be described by a variational form,Z l

0

dx

Z
A

ð�dH þ dT � dW dÞdsdzþ
I

G
dūT

i t̄dG ¼ 0, (7)

where dH and dT are the strain and kinetic energy variations, dW d is the variation in dissipated energy, t
overbar is surface traction on the free surface G, A is the cross-sectional area covered by the material, and l the
length of the beam. The variation of the strain and kinetic energy of the section are represented by the
respective integrals over the cross-sectional area.

dHs ¼

Z
A

deTc rc dsdz ¼
I

ds

Z
h

ðd�x sx þ d�xs sxs þ d�xz sxzÞdz ¼
I

ds

Z
h

deTc ½Qc�ec dz,

dTs ¼

Z
A

�duT diagðqÞ€udxdZ ¼
I

ds

Z
h

�ðdur €uþ dvr€vþ dwr €wÞdz, (8)

where diagðqÞ indicates a diagonal matrix with diagonal elements equal to the mass density r of a ply. The
dissipated strain energy of the cross-section due to viscoelastic damping during harmonic motion is given by

dW ds ¼

Z
A

deTc gcQcec dsdz ¼
I

ds

Z
h

deTc gcQcec dz. (9)

In the above equations, ec ¼ f�c1; �c5; �c6g ¼ f�cx; �cxz; �cxsg and rc ¼ fsc1;sc5;sc6g ¼ fscx;scxz;scxsg are the off-
axis strains and stresses of a composite ply; Qc and gc are equivalent off-axis stiffness and damping (loss-
factor) matrices of a composite ply with respect to the system Oxsz, defined in the appendix; h is the thickness
of the skin laminate.

2.3. Equivalent section stiffness

Using the strain expressions provided by Eq. (3) into Eq. (8), integrating over the thickness first, and then
around the skin midline, the stored strain energy of the section is expressed in terms of the generalized section
strains and the equivalent section stiffness terms, as follows:

dHs ¼

I
ðde0

T

A0e0 þ 2de0
T

B0kþ dkTD0kÞds, (10)

where e0 ¼ f�0x; �
0
xz; �

0
xsg and k ¼ fkxy; kxz; kyg represent the average strains and curvatures of the section,

respectively. A0;B0;D0 are the resultant equivalent extensional–shear, coupling and flexure–torsional stiffness



ARTICLE IN PRESS
D.A. Saravanos et al. / Journal of Sound and Vibration 291 (2006) 802–823806
matrices of the cross-section, having the form

A0
¼

A0
11 Ā

0

15 Ā
0

16

Ā
0

51 A0
55 A0

56

Ā
0

61 A0
65 A0

66

2
6664

3
7775; B0 ¼

B0
11 B0

12 B̄
0
16

B̄
0
51 B̄

0
52 B0

56

B̄
0
61 B̄

0
62 B0

66

2
664

3
775; D0 ¼

D0
11 D0

12 D̄
0
16

D0
21 D0

22 D̄
0
26

D̄
0
61 D̄

0
62 D0

66

2
664

3
775. (11)

In the previous equations the extensional and shear stiffness terms are found to be given by

A0
11 ¼

I
A11 ds,

A0
15 ¼

I
ðA16z0;sÞds,

A0
16 ¼

I
ðA16y0

;sÞds,

A0
55 ¼

I
ðA66z0

2

;s Þdsþ

I
ðA55y02

;s Þds,

A0
56 ¼

I
ðA66z0;sy

0
;sÞdsþ

I
ðA55y0

;sz
0
;sÞds,

A0
66 ¼

I
ðA66y02

;s Þdsþ

I
ðA55z0

2

;s Þds, (12)

the flexural and torsional terms are

D0
11 ¼

I
ðA11z0

2

þ 2z0y0
;sB11 þ y02

;s D11Þds,

D0
12 ¼ D0

21 ¼

I
ðA11z0y0 þ ðy0y0

;s � z0z0;sÞB11 � y0
;sz

0
;sD11Þds,

D0
16 ¼

I
ð�Ahz0A16 � ðAhy0

;s þ 2z0ÞB16 � 2y0
;sD16Þds,

D0
22 ¼

I
ðA11y02 � 2z0;sy

0B11 þ z0
2

;s D11Þds,

D0
26 ¼

I
ð�Ahy0A16 þ ðAhz0;s � 2y0ÞB16 � 2z0;sD16Þds,

D0
66 ¼

I
ðA2

h þ A66 þ 4AhB66 þ 4D66Þds (13)

and the coupling terms

B0
11 ¼

I
ðA11z0 þ B11y0

;sÞds,

B0
12 ¼

I
ðA11y0 � B11z0;sÞds,

B0
16 ¼

I
ð�A16Ah � 2B16Þds,
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B0
51 ¼

I
ðA16z0 þ B16y0

;sÞz
0
;s ds,

B0
52 ¼

I
ðA16y0 � B16z0;sÞz

0
;s ds,

B0
56 ¼

I
ð�A66Ah � 2B66Þz

0
;s ds,

B0
61 ¼

I
ðA16z0 þ B16y0

;sÞy
0
;s ds,

B0
62 ¼

I
ðA16y0 � B16z0;sÞy

0
;s ds,

B0
66 ¼

I
ð�A66Ah � 2B66Þy

0
;s ds. (14)

In the above equations, Ah ¼ A0=lh; A;B;D are the equivalent extensional stiffness matrices of the skin
laminate defined in the appendix. The terms with overbar in Eq. (11) correspond to section stiffness terms due
to extension–shear coupling in the skin laminate, and they vanish when the extension–shear, extension–tor-
sion, and bending–torsion coupling of the skin laminate is negligible ðA16 ¼ B16 ¼ D16 ¼ 0Þ. Although the
study of such coupling effects is beyond the scope of the present paper, coupling terms were included in the
stiffness matrices of Eq. (11) for the shake of completeness and comparison with other beam stiffness
formulations.

2.4. Section mass matrices

Substituting the displacement equations (2) into the kinetic energy equation (8), and performing the
integration over the thickness and around the skin midline, the kinetic energy of the section is expressed in
terms of the generalized displacements and the resultant mass matrices:

dTs ¼

I
ðdu0

T

mA €u0 þ 2du0
T

mB €bþ dbTmD €bÞds, (15)

where u0 ¼ fu0; v0;w0g and b ¼ fby; bz; yg represent the average displacements and rotations of the section,
respectively; mA;mB;mD are the equivalent linear mass, coupling and rotational inertia matrices of the cross-
section, per unit length:

mA ¼

mA
11 0 0

0 mA
11 0

0 0 mA
11

2
64

3
75; mB ¼

mB
11 mB

12 mB
13

0 0 mB
23

0 0 mB
33

2
64

3
75; mD ¼

mD
11 mD

12 mD
13

mD
12 mD

22 mD
23

mD
31 mD

32 mD
32

2
64

3
75. (16)

The elements of the previous matrices are found to have the following form:

mA
11 ¼

I
rA ds,

mB
11 ¼

I
ðz0rA þ y0

;sr
BÞds,

mB
12 ¼

I
ðy0rA � z0;sr

BÞds,

mB
13 ¼

I
ðC0rA þ r0zr

BÞds,
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mB
23 ¼

I
ð�rAz0 � rBy0

;sÞds,

mB
33 ¼

I
ðrAð�z0;sr

0
z þ y0

;sr
0
s Þ � rBz0;sÞds,

mD
11 ¼

I
ðz0

2

rA þ 2z0y0
;sr

B þ y02

;s r
DÞds,

mD
12 ¼

I
ðz0y0rA þ ðy0y0

;s � z0z0;sÞr
B � y0

;sz
0
;sr

DÞds,

mD
13 ¼ mD

31 ¼

I
ðC0z0rA þ ðC0y0

;s þ z0r0zÞr
B þ y0

;sr
0
zr

DÞds,

mD
22 ¼

I
ðy02rA � 2y0z0;sr

B þ z0
2

;s r
DÞds,

mD
23 ¼ mD

32 ¼

I
ðC0y0rA þ ð�C0z0;s þ y0rzÞrB � z0;srzr

DÞds,

mD
33 ¼

I
ððr0

2

s þ r0
2

y þC02 ÞrA þ 2ðr0y þC0rzÞrB þ r2zr
DÞds. (17)

In the above equations, rA;rB; rD, are the equivalent average, coupling and inertia densities of the skin
laminate defined in the appendix.

2.5. Beam damping

Similar to the derivation of the previous stiffness and mass relations, substituting the strain Eq. (3) into the
dissipated energy equation (9) and integrating over the cross-sectional area, we arrive at the dissipated energy
over a cross-section of the beam, which is expressed in terms of the generalized strains and three damping
matrices:

dW ds ¼ ðde0
T

A0
de

0 þ de0
T

B0
dkþ dkTB0T

d e0 þ dkTD0
dkÞ, (18)

where W ds is the dissipated energy per unit length of the beam subject to an arbitrary combination of cyclic
strain bending curvatures and twisting angles. The resultant damping matrices A0

d ;B
0
d ;D

0
d are new and

represent the damping and energy dissipation per unit length of the beam due to extension–shear, coupling
and bending–torsion deformation, respectively:

A0
d ¼

A0
d11 0 0

0 A0
d55 A0

d56

0 A0
d65 A0

d66

2
64

3
75; B0

d ¼

B0
d11 B0

d12 0

0 0 B0
d56

0 0 B0
d66

2
64

3
75; D0

d ¼

D0
d11 D0

d12 0

D0
d21 D0

d22 0

0 0 D0
d66

2
64

3
75. (19)

In the previous equations, the extensional and shear damping terms were given by

A0
d11 ¼

I
Ad11 ds,

A0
d55 ¼

I
ðAd66z0

2

;s Þdsþ

I
ðAd55y02

;s Þds,

A0
d56 ¼ A0

d65 ¼

I
ðAd66z0;sy

0
;sÞdsþ

I
ðAd55y0

;sz
0
;sÞds,
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A0
d66 ¼

I
ðAd66y02

;s Þdsþ

I
ðAd55z0

2

;s Þds (20)

flexural–torsional damping terms by

D0
d11 ¼

I
ðAd11z0

2

þ 2z0y0
;sB11 þ y02

;s Dd11Þds,

D0
d12 ¼ D0

d21 ¼

I
ðAd11z0y0 þ ðy0y0

;s � z0z0;sÞBd11 � y0
;sz

0
;sDd11Þds,

D0
d22 ¼

I
ðAd11y02 � 2z0;sy

0Bd11 þ z0
2

;s Dd11Þds,

D0
d66 ¼

I
ðA2

hAd66 þ 4AhBd66 þ 4Dd66Þds (21)

and coupling damping terms by

B0
d11 ¼

I
ðAd11z0 þ Bd11y0

;sÞds,

B0
d12 ¼

I
ðAd11y0 � Bd11z0;sÞds,

B0
d56 ¼

I
ð�Ad66Ah � 2Bd66Þz

0
;s ds,

B0
d66 ¼

I
ð�Ad66Ah � 2Bd66Þy

0
;s ds. (22)

In the above equations, Ad ;Bd ;Dd are effective extensional, coupling and flexural loss stiffness matrices of the
skin laminate defined in the appendix and were formulated by assuming negligible resultant skin laminate
force and moment in the hoop direction. In the previous derivations, it was further assumed that the
extension–shear, extension–torsion, and bending–torsion damping coupling of the skin laminate is negligible
(i.e. Ad16 ¼ Bd16 ¼ Dd16 ¼ 0) and the corresponding damping terms were omitted in the section damping
matrices (Eq. (19)) for the sake of simplicity; otherwise, these damping matrices become fully populated. Their
effect of such coupling on beam damping will be included and studied in future work.

3. Damped beam element

A three-dimensional shear beam finite element was developed for the damped dynamic analysis of tubular
composite beam structures (see Fig. 2), such as wind-turbine and helicopter rotor blades, robotic manipulator
links and so forth. The beam finite element formulation is based on the kinematic assumptions and the shear
damping beam theory formulated in the previous section. The element has 6dofs at each node (indicated with
superscript i),

Ui
e ¼ fu

0i; v0i;w0i;bi
y;b

i
z; y

i
g (23)

which are, respectively: the three displacements u; v;w at the origin Oyz of the section; the two bending
rotation angles, and the twisting angle. The approximation of the generalized displacements along the axis of
the beam are described analytically by

hu0ðxÞ; v0ðxÞ;w0ðxÞ; byðxÞ;bzðxÞ; yðxÞi ffi
XL

i¼1

NiðxÞhu0iðxÞ; v0iðxÞ;w0iðxÞ;bi
yðxÞ;b

i
yðxÞ; y

i
ðxÞi, (24)

where L is the number of nodes, NiðxÞ are c0 continuous interpolation functions, and superscript i indicates
nodal variables. The same interpolation functions are used for each dof. The generalized strains and
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(a)

(b)

Fig. 2. Beam element and nodal degrees of freedom.
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curvatures of the beam section, are now approximated using Eq. (24). By applying the previous displacement
and strain approximation Eq. (24) into the equations of motion (7)–(8) and collecting the common
coefficients, the stiffness and mass damping matrices of the beam finite element are formulated. Finally, after
substituting Eq. (24) into Eq. (9), the element damping matrix is found to have the form

Cij
e ¼

Z l

0

RiT
A0

d B0
d

B0T

d D0
d

" #
Rj dx, (25)

where the strain shape matrix Ri includes in-plane and shear terms, i; j ¼ 1; . . . ;L. Through proper collection
of the previous element matrices terms, as mandated by the equations of motion, the total stiffness K, mass M
and damping C matrices of the beam are synthesized. Assuming harmonic motion and taking into account the
governing equations of motion (7)–(9), the final discrete set of equations describes the free-vibration response
of the beam:

�o2MUþ jCUþ KU ¼ 0. (26)

Eq. (26) may be solved directly to yield the complex eigenvalues of the system. Alternatively, using an energy
approach, numerical solution of the undamped system (C ¼ 0) provides the undamped modal frequencies and
mode shapes of the beam structure, and the modal loss factors of the beam are calculated as the ratio of the
respective dissipated to maximum stored modal energy, which have the form

Zm ¼
1

2p
UT

mCUm

UT
mKUm

, (27)

where Um is the mode deflection. Using the previous described formulation, a beam element with L ¼ 2 nodes
and linear shape functions was developed and encoded into a research code named DAMPBEAM, which
predicts the damped dynamic characteristics (natural frequencies, modal damping and mode shapes) of the
beam model.
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4. Results and discussion

The developed damped beam mechanics and finite element were evaluated by predicting the modal damping
and modal frequency values of glass/polyester plate beams, tubular beams of circular section, and hollow
elliptical and rectangular-box section blades (Fig. 3). Unless otherwise stated, in all cases the results were
predicted using 20 uniformly spaced beam elements. Whenever applicable, obtained numerical results were
compared with numerical results obtained using a previously developed shell damping mechanics theory
and an eight-node composite shell finite element [10]. The damping coefficients, mechanical properties and
nominal ply thickness of the glass/polyester composite material used in this work are shown in Table 1, and
correspond to experimentally measured values [20]. In all cases the skin laminations are described in standard
laminate notation, with first ply taken at the inner surface of the skin.

The capability of the present method to predict the static stiffness was validated with numerical results for
clamped–free box-section carbon/epoxy composite beams (e.g. Fig. 3d) having complex circumferentially
Fig. 3. Beam geometries represented by their skin mid-surface: (a) plate beam, (b) circular section tubular beam, (c) elliptical section

tubular blade and (d) box section tubular beam.

Table 1

Mechanical properties of composite material

Ply thickness tl (mm) r (kg/m3) E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) v12 Zl1 (%) Zl2 (%) Zl4 (%) Zl6 (%)

0.635 1672 25.8 8.7 3.5 3.5a 0.34 0.65 2.34 2.89a 2.89

aNot measured.
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Fig. 4. Tip bending rotation for a clamped–free box section carbon/epoxy beam with ½y=�y�3; ½�y=y�3; ½y�6 and ½�y�6 skin laminations at

the left, right, top and bottom side, respectively. A 4.45N transverse load was applied at free end. ’ Present FE, ——– Asymptotic [18].
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asymmetric section laminations, reported by Volovoi and Hodges [17,18] and were selected to entail various
combinations of skin extension–shear, extension–torsion and bending–torsion coupling, as well as, cross-
sectional bending coupling. Consequently, the corresponding coupling terms indicated by overbar in the
section stiffness matrices shown in Eq. (11) are crucial for these predictions. Fig. 4 shows the predicted tip
bending rotation for a section with ½y=�y�3, ½�y=y�3, ½y�6 and ½�y�6 skin laminations at the left, right, top and
bottom side, respectively [18]. There is a slight underestimation by the present theory in the bending-stiffness
prediction, compared with the asymptotic beam theory [17] for ply orientations yielding non-negligible
shear–extension coupling, whereas the underestimation vanishes at y ¼ 0� and 90�. Fig. 5(a) shows the
torsional stiffness of a beam with ½y3=�y3� skin laminations at the left and top sides, ½�y3=y3� laminations at
the right and bottom sides; whereas Fig. 5(b) shows the torsional stiffness of a beam with ½y3=�y3� at the left
and right sides, and ½�y3=y3� at the top and bottom sides [18]. In both cases, the predictions of the present
beam theory fall within the range of other theories reported in Ref. [18], and coincide with predictions of beam
theories neglecting the presence of hoop bending moments, which apparently underestimate the cross-
sectional torsional stiffness for ply orientations yielding strong bending–torsion coupling. However,
considering that the present beam model is intended for sections with negligible or minimal bending–torsion
damping, its performance in these extreme cases is considered satisfactory. Nevertheless, the proper
consideration of shear–extension coupling in the cross-sectional damping and stiffness behavior of tubular
beams is intended to be a topic of future research.

4.1. Plate beams

The predicted modal frequencies and damping loss-factors of the first flapwise and edgewise bending modes
of cantilever plate beams (Fig. 3a) are shown in Table 2 for various laminations. The beams were 0:32m wide
and had a laminate thickness L=h ¼ 226. The current beam element yields excellent correlations of both modal
damping and natural frequencies with numerical results predicted by the damped shell finite element [10]. The
beam element successfully captures the effect of lamination on bending modal damping. As expected, the
predicted modal damping of the ½0� and ½90� laminate configurations is equal to the longitudinal and transverse
loss-factors of the composite material (see Table 1). No torsional modes are shown in Table 2, because the
torsional-stiffness formulation assumes closed tubular sections.
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Fig. 5. Tip torsional stiffness of a clamped–free box section carbon/epoxy beam with: (a) ½y3=�y3� skin laminations at the left and top

side, ½�y3=y3� laminations at the right and bottom side; (b) ½y3=�y3� at the left and right side, and ½�y3=y3� at the top and bottom side.

’ Present FE, ——– Asymptotic [18], – – – – – No hoop moments [18].
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4.2. Circular tubular beams

Tubular cantilever beams having circular sections of mid-surface diameter d ¼ 352mm and wall
thickness h ¼ 10:16mm were modeled using the current element (Fig. 2b). Table 3 shows the modal
damping and frequencies of beams with various skin laminations, all having a length-to-diameter aspect
ratio of L=d ¼ 6:5; whereas Table 4 shows the predicted modal damping and frequencies for longer
beams with length-to-diameter aspect ratio L=d ¼ 26. The corresponding predictions using a shell
damping theory and damped shell finite element model [10], implementing a 16� 8 element mesh along
the hoop and axial directions, respectively, are also shown. In all cases, the beam element has
seemingly provided excellent predictions of modal damping and modal frequencies. It has success-
fully captured the effect of skin lamination on the modal damping and frequencies of both bending
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Table 2

Modal frequency and damping of laminated plate beams

Lamination Mode Natural frequency (Hz) Loss factor (%)

Beam FE Damped shell FE Beam FE Damped shell FE

½08�s First flapping 1.2 1.2 0.645 0.645

Second flapping 7.8 7.7 0.645 0.646

First sweeping 37.2 37.3 0.76 0.76

½908�s First flapping 0.7 0.71 2.348 2.348

Second flapping 4.5 4.5 2.348 2.348

First sweeping 22.1 22.1 2.357 2.357

½02=902=452=�452�s First flapping 1 1.1 0.953 0.959

Second flapping 6.7 6.6 0.953 0.960

First sweeping 28.3 28.5 1.445 1.43

½452=�452�8 First flapping 0.8 0.8 2.45 2.34

Second flapping 5 5.0 2.45 2.34

First sweeping 24.4 24.7 2.434 2.36

Table 3

Modal frequency and damping of various laminated tubular circular beams: L=d ¼ 6:5

Lamination Mode Natural frequency (Hz) Loss factor (%)

Beam FE Damped shell FE Beam FE Damped shell FE

½08�s First flapping 49.0 46.9 0.84 1.02

Second flapping 243.6 208.0 1.52 1.86

First sweeping 49.0 46.9 0.84 1.02

Second sweeping 243.6 208.0 1.52 1.86

First torsional 158.0 157.9 2.89 2.89

Second torsional 474.9 474.2 2.89 2.89

½908�s First flapping 29.4 29.1 2.36 2.37

Second flapping 164.7 152.3 2.44 2.51

First sweeping 29.4 29.1 2.36 2.37

Second sweeping 164.7 152.3 2.44 2.51

First torsional 157.9 157.9 2.89 2.89

Second torsional 474.9 474.2 2.89 2.89

½02=902=452=ð�45Þ2�s First flapping 37.8 37.2 1.45 1.45

Second flapping 210.3 194.6 1.47 1.48

First sweeping 37.8 37.2 1.45 1.45

Second sweeping 210.3 194.6 1.47 1.48

First torsional 194.7 196.7 1.60 1.60

Second torsional 591.5 590.7 1.60 1.60

½45=�45�8 First flapping 32.6 32.5 2.42 2.36

Second flapping 188.3 181.8 2.29 2.08

First sweeping 32.6 32.5 2.42 2.36

Second Sweeping 188.3 181.8 2.29 2.08

First torsional 228.9 229.0 1.00 0.99

Second torsional 688.1 687.9 1.00 0.99
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and torsional modes. The results highlight the effect of lamination on structural damping, which appears to be
very strong.

In addition, the beam element seems to predict the effect of transverse shear on both flexural damping
and modal frequencies. This is most apparent in the damping predictions of the shorter ðL=d ¼ 6:5Þ beam
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Table 4

Modal frequency and damping of various laminated tubular circular beams: L=d ¼ 26

Lamination Mode Natural frequency (Hz) Loss factor (%)

Beam FE Damped shell FE Beam FE Damped shell FE

½08�s First flapping 3.2 3.2 0.66 0.70

Second flapping 19.9 19.5 0.74 0.84

First sweeping 3.2 3.2 0.66 0.70

Second sweeping 19.9 19.5 0.74 0.84

First torsional 39.5 39.5 2.89 2.89

Second torsional 118.7 118.4 2.89 2.89

½908�s First flapping 1.9 2.0 2.35 2.17

Second flapping 11.7 11.9 2.36 2.30

First sweeping 1.9 2.0 2.35 2.17

Second sweeping 11.7 11.9 2.36 2.30

First torsional 39.5 39.5 2.89 2.89

Second torsional 118.7 118.4 2.89 2.89

½02=902=452=ð�45Þ2�s First flapping 2.4 2.5 1.44 1.44

Second flapping 15.0 15.1 1.44 1.45

First sweeping 2.4 2.5 1.44 1.44

Second sweeping 15.0 15.1 1.44 1.45

First torsional 49.2 49.2 1.60 1.60

Second torsional 148.0 147.5 1.60 1.60

½45=�45�8 First flapping 2.0 2.1 2.45 2.39

Second flapping 13.0 13.1 2.44 2.39

First sweeping 2.0 2.1 2.45 2.39

Second sweeping 13.0 13.1 2.44 2.39

First torsional 57.0 57.3 1.00 0.99

Second torsional 172.0 171.8 1.00 0.99
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for skin laminations yielding low transverse shear stiffness (½0�16 and ½0=90=45�s), where the damp-
ing predictions for the bending modes, although in good agreement with those of the shell element,
substantially exceed the flexural damping loss factors of the thin plate beam. Table 5 shows predicted
damping and frequency values for the first bending and torsion mode of circular beams with various
aspect ratios ðL=dÞ, and quantifies the capability of the beam element to capture transverse shear
damping contributions at low L=d aspect ratios. As the aspect ratio L=d increases, the contribution of
shear damping is progressively reduced; in the latter case, the damping and frequencies predicted by the
beam element includes mainly contributions from flexural damping and stiffness components. Conversely,
the results also quantify the underestimation in damping predictions of a classical beam element
neglecting shear vs. the present shear beam. Overall, there is very good agreement between the
damping predictions of the present beam element and those of the shell-theory-based element; more-
over, the present beam element seems to provide robust predictions for a wide range of length aspect
ratios. Any differences in the damping and frequency predictions between the beam and shell elements at
low L=d ratios are mostly attributed to the constant shear strain assumption, as well as, to deviations
of the beam deformation from the assumed kinematic assumptions of the beam element. It is recalled
that the previous results were achieved without considering any shear correction factors in the through-
the-thickness integration of the shear strain-energy term in Eq. (10). Hence, it seems likely that
shear correction factors may be estimated, which upon implementation into Eq. (10) may further
improve the agreement between the present beam element and the shell element at low L=d ratios;
however, the proper selection and effectiveness of such shear correction factors remains a topic of future
studies.
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Table 5

Effect of length aspect ratio L/d on modal damping of circular tubular composite beams

Lamination Modal frequency (Hz) Modal loss-factor (%)

First flapping First twisting First flapping First twisting

Beam Shell Beam Shell Beam Shell Beam Shell

½0�16
L=d ¼ 6:5 49.0 46.9 158.0 157.9 0.85 1.02 2.89 2.89

13 12.8 12.7 79.0 78.9 0.70 0.78 2.89 2.89

26 3.2 3.2 39.5 39.5 0.66 0.70 2.89 2.89

104 0.20 — 9.9 — 0.65 — 2.89 —

½90�16
L=d ¼ 6:5 29.4 29.1 158.0 157.9 2.37 2.37 2.89 2.89

13 7.5 7.9 79.0 78.9 2.35 2.25 2.89 2.89

26 1.9 2.0 39.5 39.5 2.35 2.17 2.89 2.89

104 0.12 — 9.9 — 2.35 — 2.89 —

½02=902=452=�452�s
L=d ¼ 6:5 37.7 37.2 196.8 196.7 1.45 1.45 1.60 1.60

13 9.6 9.8 98.4 98.3 1.44 1.45 1.60 1.60

26 2.4 2.5 49.2 49.2 1.44 1.44 1.60 1.60

104 0.15 — 12.3 — 1.44 — 1.60 —

½45=�45�8
L=d ¼ 6:5 32.6 32.5 228.9 229.0 2.42 2.36 1.00 0.99

13 8.3 8.5 114.5 114.5 2.44 2.39 1.00 0.99

26 2.0 2.1 57.2 57.3 2.45 2.39 1.00 0.99

104 0.13 — 14.3 — 2.45 — 1.00 —
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4.3. Elliptical cross-section blade

An elliptical cross-section blade was considered clamped at one end, as shown in Fig. 3c. The semi-major
axis of the section is a ¼ 0:16m, the major to minor semi-axis ratio a=b ¼ 4:85, and the wall thickness
h ¼ 10:16mm. The predicted modal damping and natural frequency of an elliptical beam of length ratio
L=2a ¼ 7:2 are shown in Table 6. There is very good agreement between the damping and frequencies
predicted by the beam element and those predicted by the shell element. As in the previous cases, the results
show the predominant effect of skin lamination on the modal damping of the beam, which varies widely
between flapping, sweeping and torsional mode shapes. In addition, the beam element seems to have
successfully captured the effect of cross-section geometry on both damping and frequencies, as indicated by
the differences in modal frequency predictions between flapping and sweeping modes. The predicted effect of
the semi-axis ratio a=b on the fundamental modes is further illustrated in Table 7. Clearly, the predicted
transverse shear damping contributions may vary widely depending on cross-sectional shape and laminate
configuration. Predicted modal damping and frequency values of blades of various length aspect ratios L=2a

are shown in Table 8. Tables 6–8 also demonstrate the capability of the present beam element to capture
effects of transverse shear on the modal damping and frequencies of the blade, and the same comments
described in the circular beam case apply also here. Overall, the results illustrate that the present beam element
yields very good and robust damping and frequency predictions for elliptical section blades, whereas, its
accuracy progressively improves at high length aspect ratios.

4.4. Box-section beams

Cantilever rectangular box-section beams were also analyzed using the present beam element. Table 9
shows predicted modal damping and frequency values of beams having a square cross-section with w ¼ 0:32m
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Table 7

Effect of section aspect ratio a=b on modal characteristics of elliptical tubular composite beams: L=2a ¼ 7:2

Laminate Modal frequency (Hz) Modal loss-factor (%)

First flap First sweep First twist First flap First sweep First twist

Beam Shell Beam Shell Beam Shell Beam Shell Beam Shell Beam Shell

½0�16
a=b ¼ 10 4.5 — 39.3 — 25.8 — 0.65 — 0.77 — 2.85 —

7.5 7.2 — 37.9 — 54.7 — 0.65 — 0.76 — 2.89 —

5.0 11.0 10.8 38.6 38.6 78.7 76.0 0.66 0.85 0.77 0.80 2.89 2.81

2.5 21.0 20.3 40.6 40.4 124.8 116.7 0.68 0.83 0.78 0.83 2.89 2.77

1.0 44.9 43.3 44.9 43.3 158 157.9 0.81 0.96 0.81 0.96 2.89 2.89

½02=902=452=�452�s
a=b ¼ 10 3.4 — 30.0 — 31.6 — 1.40 — 1.45 — 1.69 —

7.5 5.4 — 28.8 — 67.9 — 1.43 — 1.45 — 1.62 —

5.0 8.3 8.5 29.4 29.6 97.9 94.1 1.44 1.47 1.45 1.47 1.61 1.59

2.5 15.8 15.7 31.0 31.0 155.4 145.5 1.44 1.44 1.45 1.44 1.60 1.56

1.0 34.4 34.0 34.4 34.0 196.8 196.7 1.45 1.44 1.45 1.44 1.60 1.60

Table 6

Modal frequencies and damping of an elliptical tubular beam for various skin laminate configurations; L=2a ¼ 7:2, a=b ¼ 4:85

Lamination Mode Natural frequency (Hz) Loss factor (%)

Beam FE Damped shell FE Beam FE Damped shell FE

½08�S First flapping 11.0 10.8 0.66 0.85

Second flapping 68.3 58.2 0.71 1.37

First sweeping 38.6 38.6 0.77 0.80

Second sweeping 207.1 201.8 1.28 1.37

First torsional 78.7 76.0 2.89 2.81

Second torsional 236.5 177.8 2.89 2.56

½908�S First flapping 6.4 6.7 2.35 2.36

Second flapping 40.2 39.2 2.35 2.42

First sweeping 22.9 23.3 2.36 2.33

Second sweeping 133.7 133.6 2.41 2.41

First torsional 78.7 77.5 2.89 2.82

Second torsional 236.5 210.8 2.89 2.40

½02=902=452=ð�45Þ2�S First flapping 8.3 8.5 1.44 1.47

Second flapping 51.7 49.7 1.44 1.47

First sweeping 29.4 29.6 1.45 1.45

Second sweeping 171.1 169.9 1.46 1.46

First torsional 97.8 94.1 1.61 1.59

Second torsional 294.2 220.6 1.61 1.51

½45=�45�8 First flapping 7.1 7.5 2.44 2.31

Second flapping 44.3 44.9 2.44 2.20

First sweeping 25.3 25.6 2.43 2.39

Second sweeping 150.8 151.2 2.34 2.29

First torsional 114.0 107.7 1.00 1.06

Second torsional 342.7 232.9 1.00 1.37

D.A. Saravanos et al. / Journal of Sound and Vibration 291 (2006) 802–823 817
wide flanges, flange width-to-web thickness ratio w=H ¼ 5, length ratio L=w ¼ 14:37, skin thickness
h ¼ 10:16mm, and various skin laminations. Predictions of modal frequencies using a commercially
available eight-node shell element [21] are also shown. Table 10 shows the effect of section aspect ratio
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Table 8

Effect of length aspect ratio L/a on modal damping and frequencies of elliptical tubular composite beams predicted using the present beam

element: a=b ¼ 4:85

Laminate Modal frequency (Hz) Modal loss-factor (%)

First flapping First sweeping First twisting First flapping First sweeping First twisting

½0�16
L=2a ¼ 7:2 11.0 38.5 78.7 0.66 0.77 2.89

14.4 2.8 9.9 39.3 0.65 0.68 2.89

28.8 0.7 2.5 19.7 0.65 0.65 2.89

115.2 0.04 0.15 4.90 0.65 0.65 2.89

½90�16
L=2a ¼ 7:2 6.4 22.9 78.7 2.35 2.36 2.89

14.4 1.6 5.8 39.3 2.35 2.35 2.89

28.8 0.4 1.5 19.7 2.35 2.35 2.89

115.2 0.02 0.09 4.90 2.35 2.35 2.89

½02=902=452=�452�s
L=2a ¼ 7:2 8.3 29.4 97.8 1.44 1.45 1.61

14.4 2.1 7.4 48.9 1.44 1.44 1.61

28.8 0.5 1.9 24.5 1.44 1.44 1.61

115.2 0.03 0.11 6.1 1.44 1.44 1.61

½45=�45�8
L=2a ¼ 7:2 7.1 25.3 114.0 2.44 2.43 1.0

14.4 1.8 6.4 57.0 2.45 2.44 1.0

28.8 0.4 1.6 28.5 2.45 2.45 1.0

115.2 0.03 0.1 7.12 2.45 2.45 1.0
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w=H on fundamental modal damping and frequencies, while Table 11 shows the effect of beam length
aspect ratio L=w on the modal characteristics. As in the previous cases, the beam element has captured
the effect of section lamination and cross-sectional geometry on both structural damping and
frequencies. The beam element seems to capture transverse shear damping contributions on the
overall damping of the box beam, and most previous comments of the circular and elliptical sections
seem to apply here. The deviation at the second torsional frequency may be attributed to local hoop
warping observed in the shell FE model, which may not be fully accounted by the present beam
model.

Overall, all previous studies demonstrate that the developed shear damping beam theory and beam element
have provided accurate and computationally efficient modal damping, modal frequency and mode shape
predictions in composite beams and blades of various skin laminate configuration and cross-sectional shape,
while it can robustly predict damping and frequencies in both short and long beams and blades. It is pointed
out, however, that the considered laminate configurations exhibit negligible extension–shear coupling in both
stiffness and damping. Laminate and/or section configurations exhibiting strong extension–shear or other
forms of laminate coupling may involve additional damping terms and may yield different structural damping.
Yet, their analysis requires additional consideration which exceeds the scope of the present paper, thus, they
will be investigated in the near future.

5. Summary and conclusions

An integrated damping mechanics formulation for composite tubular beams and blades including transverse
shear effects was presented. A shear beam element was further developed encompassing unique capabilities to
predict the damping, stiffness and mass matrices of the blade, as well as, to provide the damped modal
characteristics and the damped vibration response. As a result of the integrated formulation, the beam
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Table 9

Modal frequencies and damping of a box-section beam for various skin laminate configurations: L=w ¼ 14:36, w=H ¼ 5

Lamination Mode Modal loss-factor (%) Modal frequency (Hz)

Beam FE Beam FE Commercial shell FE [21]

½0�16
First flapping 0.65 3.1 3.1

Second flapping 0.67 19.8 18.5

First sweeping 0.68 11.0 10.9

Second sweeping 0.9 65.6 63.9

First torsional 2.89 37.7 37.0

Second torsional 2.89 113.3 93.7

½90�16
First flapping 2.35 1.8 1.8

Second flapping 2.35 11.5 11.2

First sweeping 2.35 6.5 6.4

Second sweeping 2.37 39.7 39.1

First torsional 2.89 37.7 37.5

Second torsional 2.89 113.3 105.1

½02=902=452=�452�s
First flapping 1.44 2.4 2.4

Second flapping 1.44 14.8 14.5

First sweeping 1.44 8.3 8.3

Second sweeping 1.45 50.9 50.3

First torsional 1.61 46.9 45.9

Second torsional 1.61 140.9 116.3

½45=�45�8
First flapping 2.45 2.0 2.03

Second flapping 2.45 12.7 12.6

First sweeping 2.45 7.1 7.2

Second sweeping 2.41 44.1 44.0

First torsional 0.99 54.6 52.9

Second torsional 0.99 164.2 125.8
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requires minimal input of material and blade geometry data. The described mechanics and the finite element
were encoded into a research finite element code, named DAMPBEAM, which enables the prediction of the
damped modal characteristics of the blade.

Numerous successful validations and evaluations of the damped beam element were presented for laminated
glass/polyester composite beams of circular, elliptical and box sections having various laminate configurations
exhibiting negligible extension–shear coupling in stiffness and damping. The developed damping beam theory
and the beam element have provided accurate and computationally efficient modal damping, modal frequency
and mode shape predictions in composite beams and blades of various cross-sections and lengths. The beam
element has successfully captured the effects of skin laminate configuration on structural damping. Moreover,
the beam element clearly entails the capability to capture transverse shear effects, thus robustly predicting
damping and frequencies in both short and long beams and blades. Overall, the shear beam element seems to
combine the capacity to yield accurate and robust predictions of the damped structural response of composite
blades, thus providing a valuable analytical tool for the design and aeroelastic analysis of either wind-turbine
or helicopter rotor blades.

Future work will be directed towards the study of laminate and/or section configurations exhibiting strong
extension–shear or other forms of coupling, as well as, towards the correlation of beam element results with
measured modal data on model airfoil blades.
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Table 10

Effect of box section aspect ratio w=H on modal damping of composite beams: L=w ¼ 14:36

Lamination Modal frequency (Hz) Modal loss-factor (%)

First flap First sweep First twist First flap First sweep First twist

½0�16
w=H ¼ 10 1.6 10.4 22.5 0.64 0.68 2.89

7.5 2.1 10.6 28.1 0.64 0.68 2.89

5 3.1 11.0 37.7 0.65 0.68 2.89

2.5 6.0 11.9 55.7 0.65 0.69 2.89

1 13.4 13.4 67.8 0.7 0.7 2.89

½90�16
w=H ¼ 10 0.9 6.1 22.5 2.35 2.36 2.89

7.5 1.2 6.2 28.1 2.35 2.35 2.89

5 1.8 6.5 37.7 2.35 2.35 2.89

2.5 3.5 7.0 55.6 2.35 2.35 2.89

1 7.9 7.9 67.9 2.35 2.35 2.89

½02=902=452=�452�s
w=H ¼ 10 1.2 7.8 27.9 1.42 1.44 1.62

7.5 1.6 8.0 34.9 1.43 1.44 1.61

5 2.4 8.3 46.9 1.44 1.44 1.61

2.5 4.5 9.0 69.3 1.44 1.44 1.60

1 10.1 10.1 84.5 1.44 1.44 1.60

½45=�45�8
w=H ¼ 10 1.0 6.7 32.6 2.45 2.44 0.99

7.5 1.3 8.6 40.7 2.45 2.45 0.99

5 2.0 7.1 54.6 2.45 2.45 0.99

2.5 3.8 7.7 80.6 2.45 2.44 0.99

1 8.7 8.7 98.3 2.44 2.44 0.99

Table 11

Effect of length aspect ratio on modal damping of box section composite beams: w=H ¼ 5

Lamination Modal frequency (Hz) Modal loss-factor (%)

First flap First sweep First twist First flap First sweep First twist

½0�16
L=w ¼ 7:187 12.5 42.8 75.3 0.66 0.80 2.89

14.37 3.1 11.0 37.7 0.65 0.68 2.89

28.75 0.8 2.8 18.8 0.64 0.65 2.89

115 0.05 0.18 4.7 0.64 0.64 2.89

½90�16
L=w ¼ 7:187 7.3 25.5 75.3 2.35 2.36 2.89

14.37 1.8 6.5 37.7 2.35 2.35 2.89

28.75 0.4 1.6 18.8 2.35 2.35 2.89

115 0.03 0.1 4.7 2.35 2.35 2.89

½02=902=452=�452�s
L=w ¼ 7:187 9.4 32.7 93.7 1.44 1.44 1.60

14.37 2.4 8.3 46.9 1.44 1.44 1.60

28.75 0.6 2.0 23.4 1.44 1.44 1.60

115 0.04 0.13 5.8 1.44 1.44 1.60

½45=�45�8
L=w ¼ 7:187 8.0 28.2 109.2 2.45 2.43 0.99

14.37 2.0 7.1 54.6 2.45 2.45 0.99

28.75 0.5 1.8 27.3 2.45 2.45 0.99

115 0.03 0.1 6.8 2.45 2.45 0.99
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Appendix A

A.1. Ply damping

The dissipated energy per unit volume per cycle within a ply is given by the following form:

W c ¼
1
2
eTc gcQcec ¼

1
2
rT

c Scgcrc, (28)

where Qc is the ply stiffness matrix in the local skin coordinates xsz of the beam section, Sc is the ply
compliance matrix, rc is the maximum cyclic stress, and gc is the off-axis damping matrix related to on-axis
damping coefficients by the relation

gc ¼ R�1glR, (29)

where R is proper rotation matrix, gl is the damping matrix at the material coordinate system O123
(1—longitudinal, 2—transverse, and 3—through-thickness axes) having the following diagonal form [3]:

gl ¼ diagðZl1; Zl2; Zl4; Zl5; Zl6Þ, (30)

where Zl1 is the longitudinal damping (direction 11), Zl2 is the transverse in-plane damping (direction 22), Zl6 is
the in plane shear damping (direction 12), Zl4 is the interlaminar shear damping (direction 23), and Zl5 ¼ Zl6

are the interlaminar shear damping (direction 13). These on-axis damping values are used as input for the
calculation of the beam damping.

A.1.1. Skin laminate damping and stiffness matrices

The membrane, coupling and flexural damping and stiffness matrices of the skin laminate are calculated
based on first-order shear theory assumptions [10]. For example, the damping matrices have the form

hAdij
;Bdij

;Ddij
i ¼

Z h=2

�h=2
Zcik

Qckj
h1; z; z2idz; i; j; k ¼ 1; 2; 6,

hAdij
i ¼

Z h=2

�h=2
Zcik

Qckj
dz; i; j; k ¼ 4; 5. (31)

A.1.2. Reduced skin laminate matrices

The laminate stiffness and damping matrices are further reduced, assuming that the equivalent hoop force,
moment and shear force, Ns, Ms and Nzs, respectively, defined with respect to the local section coordinates
xsz, should be negligible. If CL and CdL are the laminate stiffness and damping matrices

CL ¼
A B

BT D

� �
; CdL ¼

Ad Bd

BT
d Dd

" #
(32)

then their respective compliance counterparts are SL ¼ C�1L and SdL ¼ ST
LCdLSL. Then,

dHL ¼ fdN; dMgTSL

N

M

� �
¼ fdN�; dM�gTS�L

N�

M�

� �
, (33)

dW dL ¼ fdN; dMgTSdL

N

M

� �
¼ fdN�; dM�gTS�dL

N�

M�

� �
. (34)
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Superscript L indicates the skin laminate, N and M are effective laminates average stress and moment vectors.
The star superscript indicates the resultant reduced forces and matrices, after the application of the zero hoop
force and moment assumption Ns ¼Ms ¼ Nzs ¼ 0. Hence, the reduced laminate damping and stiffness
matrices take the form

C�L ¼ S�
�1

L ; C�dL ¼ C�
T

L S�dLC
�
L (35)

and contain the reduced membrane, coupling and flexural stiffness and damping matrices used in the
calculation of the sectional matrices. For example,

A� ¼

A�11 0 A�61

0 A�55 0

A�16 0 A�66

2
64

3
75; B� ¼

B�11 B�61

B�16 B�66

" #
; D� ¼

D�11 D�61

D�16 D�66

" #
. (36)

The corresponding damping matrices A�d , B
�
d , D

�
d have similar form. The asterisk superscript is implied in

Eqs. (12)–(14) and (20)–(22).

A.1.3. Skin laminate densities

hrA;rB;rDi ¼

Z h=2

�h=2
rh1; z; z2idz, (37)

where r is the ply density, z is the distance from the skin midline.

A.1.4. Finite element matrices

The element stiffness matrix including in-plane and shear terms is

Kij
e ¼

Z L

0

RiT A0 B0

B0T D0

" #
Rj dx (38)

and the element mass matrix l contains terms of linear density, rotational and polar inertia, and coupling terms
of the section through the relation

Mij
e ¼

Z L

0

NiT
qA qB

qB
T

qD

" #
Nj dx. (39)
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